

TORAY Innovation by Chemistry

Design Expectations Exceeded with TORAYFIL[™] Ultrafiltration Membranes at **Oliver-Mercer-North Dunn**

SYSTEM DESIGN

RO | NF | UF | MF

North Dakota, U.S.A.

The Oliver-Mercer-North Dunn (OMND) Drinking Water Treatment Plant (WTP) operates as part of the Southwest Pipeline Project (SWPP) to deliver a continuous supply of drinking water to communities in southwest North Dakota.

OMND uses a two-stage ultrafiltration (UF) system with TORAYFIL[™] hollow-fiber UF membrane modules to treat surface water from Lake Sakakawea. The second stage treats backwash water from the first stage, and the product water from the second stage is returned to the head of the plant. The raw water quality of the UF feed is listed in Table 1.

The UF filtrate is sent to a reverse osmosis (RO) system using ROMEMBRA[™] low-pressure membrane elements to reduce hardness, Total Dissolved Solids (TDS), and sulfate to the

City's potable standards. The final product water of the UF/RO membrane treatment system is blended with 60% RO permeate and 40% UF filtrate.

EXPANSION

In 2014, OMND expanded its UF capacity from 4.0 to 7.5 MGD by adding two and one skids to its primary and secondary stages, respectively. The RO capacity was increased from 2.0 to 3.0 MGD by adding one skid. The total finished water capacity of the UF/RO membrane plant would become 5.2 MGD. Additional information regarding the expansion is outlined in Table 2.

As shown in Figure 2, performance evaluation of TORAYFIL™ UF modules over fourteen months demonstrated stable operation with minimal fouling of the UF membranes and the troublefree operation of the RO system. Toray's proprietary thermallyinduced phase separation (TIPS) spinning method of the hollowfibers has produced one of the most durable PVDF (polyvinylidene fluoride) membranes in the industry, with high chemical tolerance and robust fiber integrity.

PROJECT HIGHLIGHT

The UF modules were transported in a preservative solution to prevent the fibers from drying out but were subject to freezing as they were shipped under sub-zero Fahrenheit temperatures (-20 °C). If frozen, the fibers could become brittle and snap with any jarring motion. Remarkably, out of the 150 modules that shipped, only two modules were damaged. One of the modules was restored within the manufacturing Quality Control Release Value (QCRV). This case demonstrates the mechanical strength and integrity of Toray's durable PVDF UF membrane fibers.

Figure 1: UF system by Wigen Water Technologies (www.wigen.com)

Table 1 – 1st stage UF feed water quality

Unit	Data	
	Min.	Max.
mg/L	380	510
NTU	< 1.0	31.0
mg/L	2.0	4.5
mg/L	150	180
mg/L	0.05	0.15
mg/L	0.01	0.02
mg/L	170	260
	7.5	8.5
°F/°C	35/2	68 / 20
	mg/L NTU mg/L mg/L mg/L mg/L mg/L	Unit Min. mg/L 380 NTU <1.0

Table 2 – After Phase 2 Expansion			
UF system	1 st stage	Primary UF: 5 skids / 52 modules	
	2 nd stage	Secondary UF: 2 skids / 16 modules	
RO system		3 skids / 1 MGD per skid (17:9 array, 7M)	
Product recovery	UF	>99% (95% primary, 90% secondary)	
	RO	80%	
LRV calculation		Based on conservative Darcy pipe flow model	
Pre-treatment		200 µm screen	

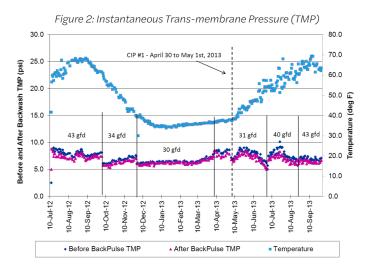


Figure 3 – RO skid using Toray's ROMEMBRA™ membrane elements

MEMBRANE PERFORMANCE

First Stage Operation

- The transmembrane pressure (TMP) did not exceed 10 psi, one-third of the maximum TMP (29 psi), as shown in Figure 2.
- Clean-in-place (CIP) performed after one year of operation for operator training purposes only.
- After observing the positive performance of the membranes in terms of fouling and permeability, the backwash flux rate was decreased from 1.5x to 1.1x filtrate flow.
- The first stage instantaneous flux could be increased 20% to a new temperature corrected flux of 58 gfd at 20°C, granting plant operators the flexibility of adjusting the softened bypass water blend ratio to 50-50 to increase the plant capacity, if desired.

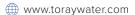
Second Stage Operation

- With feed turbidities 20 times that of the first stage, the second stage was cleaned only once within fourteen months, indicating excellent process resiliency and ability to handle upsets.
- The train was cleaned after the TMP reached approximately 10 psi demonstrating the membranes' ability to handle a high concentration of solids while maintaining a low fouling rate.
- The TMP rose above 10 psi after ten months of operation. CIP was performed after one year of operation, which reduced the TMP from 13 to less than 1 psi.

RESULTS

- The successful operation of phase 1 led to the expansion of phase 2, and design expectations were exceeded.
- The first stage UF system flux rate can be increased by 20% if desired by the end-user.
- The second stage treated feed turbidities of 55 NTU with peaks of up to 620 NTU, where the operation was stable for over one year with TMP values below the operating limit.
- Daily Log Removal Values (LRV) at 4-log using very conservative parameters.

Five years after the expansion:


- No pinning of fibers was required on any of the UF modules.
- LRV values continue to be stable at greater than 4-log on the primary UF system.
- CIP performed only once per year on the primary UF system and only 2–3 times per year on the secondary UF system.

REFERENCE

Guibert, Susan. "Operations and LRV Calculations at North Dakota's Southwest Pipeline Project Oliver-Mercer-North Dunn (OMND) Drinking Water Treatment Facility." 2014 Membrane Technology Conference & Exposition. Las Vegas, NV. March 2014.

TORAY INDUSTRIES, INC.

Head Office: Nihonbashi Mitsui Tower 24th Floor, 1-1, Nihonbashi-Muromachi 2 chome, Chuo-ku, Tokyo, 103-8666, JAPAN

🔀 info@toraywater.com

+81 3 3245-4540

in LinkedIn 🔹 YouTube

Marks designated with a $^{\scriptscriptstyle\rm M}$ or $^{\scriptscriptstyle\rm (B)}$ are trademarks of Toray Industries, Inc.

All information presented herein is believed reliable and in accordance with accepted engineering practices. Toray makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Toray assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products. © 2020 Toray Industries, Inc. Subject to change without notice.