RO | UF | MBR |

Drinking Water Delaware, Ohio, USA

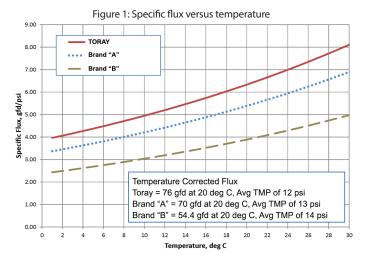




# Toray's Durable PVDF Hollow-fiber Ultrafiltration Membranes Selected for Plant Upgrade at the City of Delaware

### **OVERVIEW**

The City of Delaware's Water Treatment Plant (WTP) started operating in 1889. The plant's raw water source is a blend of surface water from the Olentangy River and groundwater from a limestone aquifer. Under the EPA's Long Term 2 Enhanced Surface Water Treatment Rule (LT2), the WTP's feedwater is classified as Bin 2, which requires a 4-log removal of Cryptosporidium. As a result, the City would convert its 6.0 MGD lime softening plant to a 7.2 MGD membrane treatment facility utilizing a 4.5 MGD ultrafiltration (UF) system to comply with LT2. A total of seven proposals were initially submitted during the UF system's bidding phase, narrowed down to three showing the best in terms of projected capital and operating costs and membrane performance. The three selections would be piloted for further evaluation, including UF modules by Toray.


### PILOT EVALUATION

The pilot's objective was to determine the full-scale facility's operating parameters and meet Ohio's EPA drinking water requirements. The shortlisted UF modules were piloted for 2,000 hours during the colder months, where the raw water temperature ranged from 1°C to 18°C, and the feed water turbidities were as high as 45 NTU. Figure 1 shows the change in specific flux with increasing temperature, where Toray demonstrated to have the highest sustainable flux.

Toray's polyvinylidene fluoride (PVDF) membranes have high resistance to chemicals, allowing for consistent flux rates after cleaning. As a result, Toray UF modules required only one clean-in-place (CIP) every two months and used less air during backwash (3.5 scfm for Toray vs. 9.0 scfm for Brand "A"). The consultant further noted that "membrane strength and reliability are the most important criteria and based on manufacturer's testing data and published studies, Toray also has the strongest membrane fiber on the market today." (Cook 2013). Also, Bin 2

| Table 1 — Quick Facts |                      |  |  |  |  |  |
|-----------------------|----------------------|--|--|--|--|--|
| Pre-treatment         | 200 μm strainers     |  |  |  |  |  |
| No. of trains         | 3                    |  |  |  |  |  |
| Max. capacity / train | 2.25 MGD             |  |  |  |  |  |
| Modules per train     | 48                   |  |  |  |  |  |
| Configuration         | 4 rows of 12 modules |  |  |  |  |  |
| Max. net flux (gfd)   | 60.5                 |  |  |  |  |  |
| Recovery              | >95%                 |  |  |  |  |  |
| Start-up              | 1Q 2015              |  |  |  |  |  |

"Toray has the strongest membrane fiber on the market today." URS (now AECOM)



classification of the City's water source requires higher pressure (20 psi) for membrane integrity tests, increasing the likelihood of fiber breaks. Thus, membrane fiber integrity played an essential role in UF module selection for the City's plant upgrade, where Toray performed well in the pilot and assessments.

To help operators check for membrane integrity during pressure decay tests (PDT), Toray provided modules with transparent filtrate site tubes, as shown in Figure 3. The full-scale plant would also incorporate clear tubes on the drainage and backwash overflow lines to provide additional information to the operators.

### DECISION MATRIX

Post-pilot, the membranes were further evaluated against non-monetary factors. As illustrated in Table 2, a decision matrix chart helped determine the best UF system for the City, where Toray scored the most points and recommended for the WTP's improvement plans.



Figure 2: UF system designed and constructed by H2O Innovation, Inc. (www.h2oinnovation.com)

## Toray's Durable PVDF Hollow-fiber Ultrafiltration Membrane Selected for Plant Upgrade at the City of Delaware

### TABLE 2 — CITY OF DELAWARE UF EQUIPMENT SELECTION DECISION MATRIX

|           | Capital Cost                         | Operational Costs | Experience | Financial Strength | Customer Service | Reliability | Skid Size / Flexibility | Membrane Pore Size | Membrane Strength | Flux Conservatism | Reduction in<br>Winter Flux | Trans-membrane<br>Pressure | Cleaning Interval | Volume of Chemicals<br>Used | Organics Removal | Overall Pilot<br>Performance |     |
|-----------|--------------------------------------|-------------------|------------|--------------------|------------------|-------------|-------------------------|--------------------|-------------------|-------------------|-----------------------------|----------------------------|-------------------|-----------------------------|------------------|------------------------------|-----|
|           | 5                                    | 5                 | 8          | 6                  | 7                | 10          | 5                       | 2 2                | 8                 | 3                 | st impor                    | 4                          | 6                 | 2                           | 4                | 6                            |     |
|           | Score (1–10, with 10 being the best) |                   |            |                    |                  |             |                         |                    |                   |                   |                             |                            |                   |                             |                  |                              |     |
| Brand "A" | 10                                   | 8                 | 6          | 8                  | 8                | 8           | 10                      | 8                  | 8                 | 7                 | 8                           | 10                         | 8                 | 8                           | 9                | 8                            |     |
| Brand "B" | 6                                    | 10                | 10         | 10                 | 8                | 8           | 8                       | 10                 | 8                 | 8                 | 6                           | 8                          | 8                 | 8                           | 10               | 8                            |     |
| Toray     | 8                                    | 9                 | 7          | 8                  | 8                | 10          | 8                       | 10                 | 10                | 7                 | 8                           | 10                         | 10                | 10                          | 8                | 8                            |     |
|           | Weighted Score                       |                   |            |                    |                  |             |                         |                    |                   |                   |                             | Total                      |                   |                             |                  |                              |     |
| Brand "A" | 50                                   | 40                | 48         | 48                 | 56               | 80          | 50                      | 16                 | 64                | 21                | 24                          | 40                         | 48                | 16                          | 36               | 48                           | 685 |
| Brand "B" | 30                                   | 50                | 80         | 60                 | 56               | 80          | 40                      | 20                 | 64                | 24                | 18                          | 32                         | 48                | 16                          | 40               | 48                           | 706 |
| Toray     | 40                                   | 45                | 56         | 48                 | 56               | 100         | 40                      | 20                 | 80                | 21                | 24                          | 40                         | 60                | 20                          | 32               | 48                           | 730 |

This decision matrix was intended to be used as a tool for aiding the City in determining the best system; however, the City was open to making the final decision based on other criteria as well and was not obligated by this decision matrix.

| Table 3 — Design data of UF membrane modules |           |           |           |  |  |  |  |  |
|----------------------------------------------|-----------|-----------|-----------|--|--|--|--|--|
| Manufacturer brand                           | Toray     | Brand "A" | Brand "B" |  |  |  |  |  |
| Pore size, microns                           | 0.01      | 0.03      | 0.02      |  |  |  |  |  |
| Area (sq.ft.) of each MF module              | 775       | 829       | 550       |  |  |  |  |  |
| Summer Conditions (17°C)                     |           |           |           |  |  |  |  |  |
| Peak Flux (gfd) with N-1 skids               | 68.12     | 62.3      | 53.25     |  |  |  |  |  |
| Net flux with N-1 skids                      | 60.48     | 56.54     | 47.85     |  |  |  |  |  |
| Net Capacity (N-1) required                  | 4,500,000 | 4,500,000 | 4,500,000 |  |  |  |  |  |
| Overall Recovery                             | 95.0%     | 94.9%     | 95.0%     |  |  |  |  |  |
| Normalized Average TMP, psig                 | 12.0      | 13.0      | 14.0      |  |  |  |  |  |
| Winter Conditions (3°C)                      |           |           |           |  |  |  |  |  |
| Peak Flux (gfd) with N-1 skids               | 49.95     | 45.69     | 33.13     |  |  |  |  |  |
| Net flux with N-1 skids                      | 44.35     | 47.47     | 29.77     |  |  |  |  |  |
| Net Capacity (N-1) required                  | 3,300,000 | 3,300,000 | 2,800,000 |  |  |  |  |  |
| Overall Recovery                             | 95.0%     | 94.2%     | 95.0%     |  |  |  |  |  |
| Transmembrane Pressure, psig                 | 12.0      | 12.0      | 18.5      |  |  |  |  |  |

Figure 3: filtrate site tubes

### REFERENCE

Cook. Jeremy. "Design and Permitting of UF/NF System with Surface Water and Groundwater Supplies." 2013 Membrane Technology Conference & Exposition. San Antonio, TX. February 2013.

TORAY INDUSTRIES, INC.

Head Office: Nihonbashi Mitsui Tower  $24^{\rm th}$  Floor, 1-1, Nihonbashi-Muromachi 2 chome, Chuo-ku, Tokyo, 103-8666, JAPAN



( +81 3 3245-4540







Marks designated with a  $^{\scriptscriptstyle{\text{TM}}}$  or  $^{\scriptscriptstyle{\text{(8)}}}$  are trademarks of Toray Industries, Inc.

All information presented herein is believed reliable and in accordance with accepted engineering practices. Toray makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Toray assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products. © 2021 Toray Industries, Inc. Subject to change without notice.